Earth's energy budget

Earth's energy balance and imbalance, showing where the excess energy goes: Outgoing radiation is decreasing owing to increasing greenhouse gases in the atmosphere, leading to Earth's energy imbalance of about 460 TW.[1] The percentage going into each domain of the climate system is also indicated.

Earth's energy budget (or Earth's energy balance) accounts for the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also accounts for how energy moves through the climate system.[2]: 2227  The Sun heats the equatorial tropics more than the polar regions. Therefore, the amount of solar irradiance received by a certain region is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things.[2]: 2224  The result is Earth's climate.

Earth's energy budget depends on many factors, such as atmospheric aerosols, greenhouse gases, surface albedo, clouds, and land use patterns. When the incoming and outgoing energy fluxes are in balance, Earth is in radiative equilibrium and the climate system will be relatively stable. Global warming occurs when earth receives more energy than it gives back to space, and global cooling takes place when the outgoing energy is greater.[3]

Multiple types of measurements and observations show a warming imbalance since at least year 1970.[4][5] The rate of heating from this human-caused event is without precedent.[6]: 54  The main origin of changes in the Earth's energy is from human-induced changes in the composition of the atmosphere.[1] During 2005 to 2019 the Earth's energy imbalance (EEI) averaged about 460 TW or globally 0.90 ± 0.15 W per m2.[1]

It takes time for any changes in the energy budget to result in any significant changes in the global surface temperature. This is due to the thermal inertia of the oceans, land and cryosphere.[7] Most climate models make accurate calculations of this inertia, energy flows and storage amounts.

  1. ^ a b c Cite error: The named reference Trenberth2022 was invoked but never defined (see the help page).
  2. ^ a b Cite error: The named reference IPCC AR6 glossary was invoked but never defined (see the help page).
  3. ^ Cite error: The named reference WEB-NASA-EnergyBalance was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference JOC20161015 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference EarthSysSciData_20230417 was invoked but never defined (see the help page).
  6. ^ Allen, M.R., O.P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, R. Perez, M.Wairiu, and K. Zickfeld, 2018: Chapter 1: Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 49-92. https://doi.org/10.1017/9781009157940.003.
  7. ^ Cite error: The named reference JOURNAL-Previdi-2013 was invoked but never defined (see the help page).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search